(AI) The subfield of computer science concerned with the concepts and methods of symbolic inference by computer and symbolic knowledge representation for use in making inferences. AI can be seen as an attempt to model aspects of human thought on computers. It is also sometimes defined as trying to solve by computer any problem that a human can solve faster. Examples of AI problems are computer vision (building a system that can understand images as well as a human) and natural language processing (building a system that can understand and speak a human language as well as a human). These may appear to be modular, but all attempts so far (1993) to solve them have foundered on the amount of context information and "intelligence" they seem to require. The term is often used as a selling point, e.g. to describe programming that drives the behaviour of computer characters in a game. This is often no more intelligent than "Kill any humans you see; keep walking; avoid solid objects; duck if a human with a gun can see you". See also AI-complete, neats vs. scruffies, neural network, genetic programming, fuzzy computing, artificial life. ACM SIGART. U Cal Davis. CMU Artificial Intelligence Repository. |